
 1

DATABASE DESIG
 A
D DATA MODEL FOU
DED O
 CO
CEPT A
D

 K
OWLEDGE CO
STRUCTS

ABSTRACT

In this paper a new data model is introd-
used. The data model is based on concept
constructs. We present a novel approach to
and a novel definition of a concept.
Attention is paid to solutions of complex
databases which can maintain states of
entities or relationships, as well as changes
made to these states. We consider that the
existing theory does not have satisfactory
solutions for these databases.
The approach in this paper is not a kind of
formal axiomatic system; rather we define
the necessary and important constructs in
the process of database design.

1. I
TRODUCTIO

In brief, this data model is devoted to data-
databases which can maintain changes of
attributes and databases which can main-
tain knowledge related to their data.
Temporal databases and databases that ma-
intain history, belong to this group of data-
bases. Databases, in which attention is pla-
ced on data in its broadest sense, also bel-
ong to this group of databases. An example
of one such database is a database which
can always determine which person or
procedure created any piece of data in the
database. Other examples are online appli-
cations such as online web applications
where data should be available and public
as soon as it is entered. We find that these
databases are of a general character, i.e.
they are not special cases.
Note that the special case of the databases
mentioned above are databases that have
Insert, Delete and Update operations, but
in which changes are not maintained, i.e.
they always have one state – the state after

the last changes. Simple databases, which
have no changes at all, also belong here.
Because the existing database theory has
tediously researched this group of data-
bases, we have not devoted any attention to
these simple cases.

2. PRELIMI
ARIES

We accept that the world is discrete, i.e.
that it consists of things or individuals.
These things or individuals are called
entities [3]. This means that we use the
term entity only for real world objects.
During the process of database design we
do one very important thing - we interpret
(a part of) the real world. Because they are
basic in interpreting the real world, we
introduce m-attributes, m-entities,
m-relationships and m-states and create a
more formal approach to these very
complex objects. These objects are
interpretations and abstractions of their
corresponding real world objects.
We also introduce concepts, which we use
to model these real world objects and their
relationships. Concepts are abstract
objects constructed in our mind. Concepts
are presented in detail in Section 4.
Extension of a Concept. We accept G.
Frege’s assumption that an object may be
associated to every concept. This object is
called the extension of the concept [4], [5].
Intrinsic Properties. We assume that the
concepts of entities have only intrinsic
properties. By intrinsic properties, we
mean properties which an entity (or
relationship) has itself; intrinsic properties
are independent of other concepts.
Extrinsic properties, on the other hand, are
all other properties related to the concept
of the entity.

 2

3. PROPERTIES A
D ATTRIBUTES

Data which is related to attributes and
properties makes up the majority of data in
every database. This data comprises
almost all of a database’s data. In Section 3
we present a novel approach to properties
and attributes.
Limitation of Interpretation. Our
assumption related to real world objects is
that we can only recognize or match those
objects for which we have perceptual,
inferential or rational abilities. In the
remaining text instead of perceptual,
inferential, or rational abilities, we will use
just the term “abilities”.

3.1 Events

In this paper it is assumed that there are
two kinds of events in the real world
which are related to information about an
entity:
(i) An event which causes new
information about the entity.
(ii) An event which causes existing
information to be invalid after this event.
We will also say this event closes existing
information about the entity.

3.2 Information about an Entity

When we speak of information about an
entity in this paper, we mean information
about the entity’s attributes. In our
terminology, a property is a concept and a
property has multiple attributes.
Example 1:
The color of an entity is a property of that
entity, while red, blue or green are
attributes of the entity. Of course, we must
have the ability to match the real world
color red to the corresponding attribute red
in our mind. The color of an entity is the
concept of color in our mind – as we
mentioned, a concept is an abstract object.
Attributes in our mind correspond to an

entity’s real world attributes carried by
information■

3.2.1 Matching of attributes.
The term match is used in the sense that
information about an entity’s attribute
generates (by means of our abilities) a
corresponding image of the attribute in our
mind. This attribute’s image matches the
entity’s attribute■
Definition. An m-attribute can be built up
by the following two steps:
(i) The m-attribute is created by the match
between an entity’s attribute and the
corresponding attribute in our mind.
(ii) The m-attribute is the interpreted and
abstracted entity’s attribute brought to us
by information■

3.3 Definition of the Concept of an

Entity’s Property.

The concept of an entity’s property is an
abstract object which is generated by
information about the entity’s attributes
and which is satisfied by its m-attributes
and by nothing else■
Universal and Particular Attributes. We
assume that attributes are universal, and
not particular, i.e. that attributes do not
depend on an entity■
Example 2: For two cars whose color is red
we say that they have the same color – red.
The principle of universality of an attribute
enables the attribute red in our mind to
match the color red in all cars which are
red. The color red does not depend on a
particular car■
Let S be the relation satisfy between a con-
cept of a property and the corresponding
m-attributes. If an m-attribute satisfies the
corresponding concept, then it can be said
that they are in a relation and we write
that: S (the m-attribute, the concept of the
property) = T.

 3

By definition of relation S, only the
members of the extension of this property
satisfy the concept of the property. On the
other hand, every m-attribute is created
with the help of its corresponding entity’s
attribute. Considering 3.2.1, 4.2.1 and
4.2.2 the following holds true:

S (the m-attribute, the concept of the
property) = T iff the m-attribute matches
the entity’s attribute. … (3.3.3)

Loosely speaking, (3.3.3) can be written
as: The color of the entity car is red iff the
information “the color of car is red”
matches the m-attribute.
Relation S implies that there is
subordination in which the satisfaction of
the concept for the m-attribute comes first,
while its extension comes second.

3.4 Definition of a Fact about an Entity

If an attribute of an entity brought by
information is matched with its
corresponding m-attribute and is
memorized in our mind, then we call this
entity’s attribute a fact about the entity■
Note that an attribute which is a fact is al-
ways related to its entity (or relationship).
Thus, “red” is a universal attribute, while
“red car” refers to the entity car and can be
a fact. A fact about an entity is determined
by three things: an attribute, a property and
an entity. So when we say “The car is red”
then this fact is determined by the
following: the entity car, attribute red and
property color. The sentence “The car is
red” expresses a fact about the entity. First,
we memorize the fact in our mind, and
then we can form a sentence that expresses
the fact. Factual statements always express
something about the world.
Facts about entities are atomic, they are not
composed. We also say facts about entities
are primitive. However, we can construct a
compound structure from facts.

A fact retains the meaning of that which
the information is about. We define
facts as something of which we are aware,
something connected to an entity and the
entity’s property.

3.5 Definition of an Entity’s Attribute.

An entity’s attribute is presented by the
following:
(i) Information about the attribute of the
entity;
(ii) One fact about the entity■
Example 3. This example is related to the
work of French philosopher Maurice
Merleau-Ponty [6]. When we look at a
wheel from an angle, we see the wheel in
the shape of an ellipse. However, we
describe the wheel as being a circle.
This example is another confirmation that a
concept is not determined only by a
conjunction of properties.

3.6 Primitive Knowledge About an

Entity
Those entity’s attributes which are facts
are stored in a database. They are primitive
knowledge about an entity. A stored or
memorized fact becomes permanent.
Definition. A set of all facts about one
entity is primitive knowledge about the
entity. We denote it as KE = {F1, F2,…,Fk}
where Fi, are the facts defined in 3.4

3.7 Knowledge about an Attribute

Knowledge about an attribute is a set of
facts which are related to one individual
attribute. We will denote knowledge about
an attribute in the following way:
 Ka = {Fa1, Fa2,…,Fam}
For instance, if John provided information
about attribute An, then John is a fact
related to attribute An. If attribute An was
created in the real world on 12 December
2007, then this date is a fact about attribute
An.

 4

3.8 Knowledge about Data

When a fact about an entity is stored in a
database, we name it data. Data is represe-
nted by a value from a domain. Facts about
data from a database establish knowledge
about this data. We will denote this
knowledge as:
 Kd = {Fd1, Fd2,…,Fdn}
For example, if Sam entered the data Dn
into the database to represent the attribute
An, then Sam is a fact related to Dn. If the
data Dn was entered on 1/12/08, then this
date is a fact about Dn.■
Knowledge defined in 3.6 – 3.8 is related
to basic database elements and our inten-
tion is to define this basic knowledge. The
facts from 3.7 and 3.8 are atomic, similar
to facts about an entity.
Regarding the above defined three terms of
knowledge, we can say that all data (i.e.
the information which is stored in a data-
base) represents facts or that we believe it
represents facts.

3.9 Knowledge about an Entity.
Knowledge about an entity at some point
in time is denoted by K and
K = KE ∪KA ∪KD; where KA is the
knowledge about all the attributes of one
entity and KD is knowledge about all the
data about the entity. We conclude that:
(i) There are different kinds of facts; facts
about entities, attributes or data
(ii) We use attributes together with
associated knowledge related to them.
We define knowledge about a relationship
similarly to defining knowledge about an
entity.

4 THE CO
CEPTUAL MODEL

4.1 Introduction to conceptual model

In Section 2 we introduced concepts as
abstract objects which are abstracted by
our rational activities. The process of data
modeling is divided into two levels; a con-

ceptual level, and a logical level or databa-
se level. There is a mapping between the
conceptual schema and the database sche-
ma. We determine schema mapping as a
mapping between a source schema and a
target schema. The source schema is the
schema of a concept. On the conceptual
level we only consider schemas of conc-
epts, schema mappings and extensions.

4.2 Concepts

We construct concepts so that they are
satisfied by the intended things. We derive
the schema of a concept and its semantic
properties from a corresponding concept
and we use this schema to express the
concept in language. For the purpose of
database theory and practical use, we will
define the following types of concepts: the
concept of an entity, the concept of an m-n
relationship and the concept of a state of an
entity (or relationship). The concept of an
entity’s property is defined in 3.3. Every
schema of the above concepts denotes a
key that uniquely identifies the members of
the concept’s extensions. The process of
identifying plurality and individuals is
defined in Section 5.
We do not specify a schema definition
language. Instead, we define a simple and
intuitive schema-level notation.

4.2.1 G. Frege’s Assumption

In Section 2 we introduced the extension
of a concept. Now we determine the
extension of a concept in the way it was
done by Gottlob Frege: The extensions of
two concepts are identical objects iff the
two concepts are coextensive■
According to G. Frege, two concepts are
coextensive if every thing that satisfies
either satisfies the other.
Although we use G. Frege’s approach to
extensions, we have a different approach to
concepts. We define a concept in Section
5.3.

 5

In the same way in which we defined
 m-attributes we define m-entities,
m-relationships and m-states. These
objects are interpretations and abstractions
of their corresponding real world objects,
as is determined in Section 2. M-entities
satisfy the concept of an entity, m-relation-
ships satisfy the concept of an m-n relatio-
nship, and m-states satisfy the concept of a
state of an entity (relationship). We also
consider the process of matching real
world objects with their interpretations and
abstractions. During the process of inter-
preting a real world object, there is another
process which is involved in the construct-
ion of the interpreted object. We call this
process matching. The following two
things are important in the matching:
(i) The interpreted object matches the real
world object in compliance with its
concept;
(ii) The interpreted object can be used to
identify the corresponding real world
object.

4.2.2 Concept of an Entity

We determine the concept of an entity by
its properties. We assume that these
properties are intrinsic. This implies that
the entity’s properties are related only to
the concept of the entity and to nothing
else. Therefore, we use an identifier of an
entity as a key in this paper. The schema of
the concept of an entity is defined by the
following two forms:
(i) By 3.3, properties are concepts.
Therefore, the schema of the concept of an
entity can be presented as follows:
Schema1 (IdOfEntity, Property1),…,
Scheman (IdOfEntity, Propertyn), where
IdOfEntity is the identifier of the entity
which denotes that all the properties
belong to one entity.
(ii) The schema of the concept of the entity
can be also determined as:

Schemae (IdOfEntity, Property1,…,
Propertyn)■
These two schemas show that one entity
can be represented either by a concept or
by a set of concepts. In Example 6 in 4.2.3
the way in which an entity represented by
binary concepts can be represented by one
concept will be shown.
M-entity. The m-entity consists of m-attri-
butes which correspond to the real world
entity’s attributes. We assume that the
m-entity matches an entity if all it’s the
m-attributes match the corresponding enti-
ty’s attributes carried by information. We
say that the m-entity satisfies the concept
of an entity if all of its m-attributes satisfy
the concepts of the corresponding properti-
es. We define the relation satisfy as a relat-
ion between the concept and the m-entities
which satisfy the concept. Similarly to
(3.3.3), we can say that the following holds
true:
S (the m-entity, the concept of the entity) =
T iff the m-entity matches the entity.

4.2.3 Concept of an m-n Relationship

This is a concept which models
relationships between two entities. We
construct this concept so that it determines
an m-n relationship and the properties
which are related to it, m,n ≥ 1. The
schema of a concept of an m-n relationship
between two entities includes the
following three components:
(i) Schemar (KeyOf Entity1,
KeyOfEntity2, Property1,…,Propertym)
(ii) The key of a relationship is represented
by keys of the involved entities. In the sch-
ema: Key = (KeyOfEntity1, KeyOfEntity2).
(iii) The involved entities are represented
by the schemas of their concepts. So the
concepts of these entities are involved in
the concept of the m-n relationship■
The concept of an m-n relationship is satis-
fied by the corresponding m-relationships.

 6

The components of the m-relationship
satisfy 4.2.3.(i), 4.2.3.(ii) or 4.2.3.(iii).
In a similar way to (3.3.3) we define that:
S (the m-relationship, the concept of the
m-n relationship) = T iff the m-relationship
matches the m-n relationship.
Example 4. The schema:
TeacherBookCourse (Teacher, Book,
Course) is not a schema for a concept of an
m-n relationship, because the schemas for
corresponding entities are not given. In
other words, it is not appropriate that the
construction of a concept be based on
unknown concepts.
Example 5. Owner (PersonId, CarId),
Key = (PersonId, CarId);
Person (PersonId, PersonName), Key =
(PersonId);
Car (CarId, Maker, Color), Key = (CarId).
Here we have a schema of the concept of
the m-n relationship Owner between the
entities Person and Car. Now for example,
we can map the conceptual schema to a file
schema. In this case we will construct the
following files: FileOwner, FilePerson and
FileCar.
(i) The FileOwner file has the schema:
(PersonId, CarId), and the following two
keys:
(ii) K= (PersonId, CarId) and –K = (CarId,
PersonId).
We named the keys “K” and “–K” to emp-
hasize that they are inverses of each other.
(iii) File Person has the schema: Person
(PersonId, PersonName), Key = (PersonId)
 File Car has the schema: Car (CarId,
Maker, Color), Key = (CarId)■
Example 6. We can apply 1-1 relationships
to the extensions and entity which corresp-
ond to the concepts in 4.2.2(i) and then we
will get the schemas in 4.2.2.(ii). Thus, if
we apply 1-1 relationship to the extensions

and entity which have the following sche-
mas: Schema1 (IdOfEntity, Property1),
Schema2 (IdOfEntity, Property2)
then we have Schemae2 (IdOfEntity,
IdOfEntity, Property1, Property2) =
Schemae2 (IdOfEntity, Property1,

Property2) and this is by definition the
schema of the entity. Similarly, we can get
Schemae3, or Schemaen, i.e. schema of an
entity with n properties.

4.2.3.1 Complex Concepts

The above examples show us how we can
build complex concepts from basic
concepts. We construct complex concepts
by applying the concept of m-n relation-
ships among entities, where m, n ≥ 1.

4.2.4 Concept of a State of an Entity or

Relationship

In Section 1 we determined which
databases can be effectively solved using
the results from this paper. Here in 4.2.4
we present our solutions for these
databases. Later in examples 7, 8 and 9 we
show a small fraction of practical and
technical possibilities based on our
solutions. By using the concept of a state
of an entity or relationship we construct
solutions for the databases mentioned in
section 1 as well as many other complex
databases. The concept of a state of an
entity has the following components:
properties, knowledge about attributes and
knowledge about the data. The concept of
a state of an entity also contains an
identifier of the entity and an identifier of
the state of the entity. One entity can have
many states. A concept of a state of an
entity has the following form:

 identifier of the identifier attributes knowledge about knowledge
 state of an entity of the entity attributes about data

 7

In the states of an entity, the identifier of
the entity stays unchanged through all the
states of the entity, because the states are
from one entity (however if we want, then
we can decide and determine which of the
states belong to one entity). The identifier
of the entity determines which states
belong to the entity. If an entity only has
one state, then the identifier of the entity is
semantically equal to the identifier of the
state.
Knowledge about the entity’s attributes
and knowledge about data are defined in
3.7 and 3.8. Knowledge about an entity (or
relationship) is defined in 3.9

4.2.4.1 Definition of a State of an Entity

or Relationship.

A state of an entity (or relationship) is
knowledge about the entity (relationship) ■

The identifier of a state of an entity is the
key of the state of the entity.

4.2.4.2 Definition of a Change of a State

A change of a state of an entity is any
change of knowledge about the entity■
A change of a state of an entity (or relatio-
nship) is always caused by an event from
the real world. So in the case that a real
world event causes a change of the state of
an entity, we will create a new identifier of
the new state of the entity.
When we work with the concept of a state
of an entity, this means that we keep all the
data in a database. It also means that no
updating or deleting of data from the
database occurs (i.e. the database is always
expanding), because we define only two
operations on the data entry level; adding
new data and closing existing data.

A concept of a state of a relationship has the following form:

identifier of the state
of a relationship

key of a
relationship

attributes
knowledge about
attributes or the

key

knowledge
about data

Here the “key of a relationship” is a set of
identifiers of states of the involved entities.
Now we will analyze in more detail the
concept of a state of an entity. The concept
of a state of an entity is a definite departure
from the idea that a concept is determined
only by a conjunction of properties. This
concept has an associated structure which
generates the meaning of the m-entity (or
m-relationship) as the totality of the
entity’s (or relationship’s) states and the
corresponding knowledge. We assume the
following principles regarding concepts
and especially the concept of a state of an
entity to be true:
(i) When we are constructing a concept,
then we know in advance how that concept
has to look, i.e. which kinds of the entities

satisfy the concept. As concepts are abstr-
act objects i.e. concepts are on the thought
level, we actually know what kind of con-
cept we want even before we have formed
a sentence which expresses this concept.
(ii) The concept of a state of an entity is
based on the definition of state in 4.2.4.1.
This concept determines a new state every
time a change of the state of the entity (or
relationship) happens in the real world.
(iii) The concept of a state of an entity
enables us to identify the plurality of
states, and also enables us to identify
individual states. This concept determines
the construction of individuals as well as
the identification of the constructor which
constructed these individuals.

 8

4.2.5 Schema of the Concept of a State.
Now we will present the schema of the
concept of a state of an entity in detail. The
schema of the concept of a state of an
entity takes the form:
ConceptStateName (P, E, A1… An, Kp1…
Knr, Dp1,…,Dns)
where P is the concept of the identifier of a
state of the entity (or relationship);
E is the concept of the identifier of the
entity;
A1,…,An are concepts of the properties of
an entity (or relationship);
Each property, including E and P, can have
different sets of knowledge K associated to
them and defined in 3.6 – 3.9. Thus:
P has knowledge Kp1, Kp2… Kpi;
E has knowledge Ke1, Ke2… Kej;
A1 has knowledge K11, K12…K1k;
….
An has knowledge Kn1, Kn2… Knr.
Knowledge Dp1,…,Dns is defined in 3.8.

4.2.6 Binary Concepts.
The schema of a concept of a state can be
represented by schemas of the following
binary concepts: (P, E), (P, A1)… (P, An)
to which we associate the corresponding
knowledge and get the following concepts:
(i) Schemas of K-concepts;
Ck1 (P,A1, K11,…,K1k,D1,…,D1m);
…
Ckn (P, An, Kn1,…,Knr, Dn1,…,Dnq);
(ii) Schema of the E-concept
Ce (P, E, Kp1,…,Kpi, Dp1,…,Dps);
(iii) Schema of the E-concept for the state
of an m-n relationship between two entities
will be as follows: Cemn (P, Pe1, Pe2,
Kk1,…,Kkt, Dk1,…,Dku) where Pe1, Pe2 are
identifiers of states of entities e1, e2.
The state of any entity can be represented
in two ways: the one described in 4.2.5 and
by the one described in 4.2.6. The schemas
in sections 4.2.5 and 4.2.6 represent the
same entity. The constructs applied in
these schemas enable the direct

construction of schemas in 4.2.6 from the
schemas in 4.2.5, and vice versa. These
constructs enable every change of state to
be recorded. We prefer this recording to be
done by constructors and the advantages of
this are explained in Section 6. E-concepts
determine the relationships between one
entity and all of its states.

4.2.7 States in Relational Model

In the relational model we represent
knowledge by columns. We represent a
state of an entity in the relational model as
the following relation schema: Rstate (P,
E, A1… An, Kp1… Knr, Dp1,…,Dnq). Here
relation schema Rstate is a target schema
and the corresponding source schema is in
the form of ConceptStateName from 4.2.5.
We accept that a relation has, aside from
properties columns, those columns which
represent knowledge and identifiers.

4.2.8 Binary Relations

The schema Rstate can be represented by
schemas of the following binary relation
schemas: (P, E), (P, A1)… (P, An) to
which we associate the corresponding
knowledge and we get the following
relation schemas:
(i) Schemas of K-relations;
Rk1 (P,A1, K11,…,K1k,D1,…,D1m);
…
Rkn (P, An, Kn1,…,Knr, Dn1,…,Dnq);
(ii) Schema of the E-relation
Re (P, E, Kp1,…,Kpi, Dp1,…,Dpq);
If we have a schema of the state of an m-n
relationship between two entities, then
instead of E we will put Pe1,Pe2, in Re ,
where Pe1, Pe2 are identifiers of states of
entities e1, e2■
We call these schemas corresponding
binary schemas because each of them has
one attribute and the simple key. E-relation
and K-relations are types of binary
relations because if we omit the columns

 9

of knowledge, then the relations become
binary relations.

4.2.9 An Effective Solution Which

Decomposes Any Relation of State to

Binary Relations

Let Rstate and Rk1,…,Rkn, Re are the
relation schemas defined in 4.2.7 and 4.2.8
respectively. We will say that relational
schema Rstate is equal to join of its corre-
sponding binary schemas and denote it as
Rstate (P, E, A1… An, Kp1… Knr,
Dp1,…,Dnq) =
Re (P, E, Kp1,…,Kpi,Dp1,…,Dpq) join

Rk1 (P,A1, K11,…,K1k, D1,…,D1m) join,…,
join Rkn (P, An, Kn1,…,Knr, Dn1,…,Dnq)
if and only if every relation that is a legal
value for Rstate is equal to the join of its
corresponding binary relations■
This equation holds always because of the
construction of the simple key, states and
E-relation. One identifier of a state
determines all the components of the state.
One identifier of an entity determines all
the states of the entity. The relations are
joined using common column P. The
equation holds true for both entities and
relationships.

__
Example 7
This example shows how certain complex
databases, including “temporal databases”
and “databases which maintain history”,
should be solved. The solution is related to
two entities and one relationship, but each
of these three data structures changes its
state. We begin with the fact that the
concept of a state of the entity Car is given

by the schema: Car (CarKey, CarId,
Maker, Type, Color, DateFrom, DateTo).
Using the mapping from the schema of the
concept to the schema of the relation we
have the following relation schema: Car
(CarKey CarId, Maker Type, Color
DateFrom, DateTo). We will use the
schema to form the following table Car:

 Table Car
CarKey CarId Maker Type Color DateFrom DateTo
--
23 vin1 Buick sedan silver 1.1.2000. 12.20.2000
24 vin1 Buick sedan blue 12.21.2000 8.1.2001
25 vin1 Buick sedan red 8.2. 2001 1.1.2005
26 vin1 Buick sedan silver 1.2. 2005 999999
27 vin2 Honda sedan silver 3.15.2006 999999
28 vin3 Ford sedan black 3.15.2006 999999
…
CarKey is the identifier of the state of the
entity Car, this is the only property of Car
that has unique values. CarId is an
identifier of the entity Car. VIN (vehicle
identification number) values are used for
this property. In this example CarKey’s
values 23, 24, 25, and 26 denote four states
of the one car identified with CarId = vin1.
Date “999999” represents the maximum
date in the used software and means that
the corresponding data is current. In this

table, the columns DateFrom and DateTo
are strictly related to one attribute from the
column Color. DateFrom and DateTo are
not properties of the entity Car. Instead,
they are a part of our actual knowledge
about one particular attribute from the
column Color. The entity Car also
represents knowledge about a particular
attribute from the column Color.
Therefore, besides columns which
represent properties, the table Car also has

 10

columns which represent knowledge about attributes.

 Table Person Table Owner
PersonKey PersonId Name OwnerKey PersonKey CarKey DateFrom DateTo
--- ---
 208 ssn1 Mary Jones 54 210 26 1.2.2005 3.15.2006
 209 ssn1 Mary Adams 55 210 27 3.16.2006 10.9.2006
 210 ssn2 John Stewart 56 210 26 10.10.2006 999999

In the table Person, PersonKey is an
Identifier of the state of the entity Person,
PersonId is the Identifier of the entity
Person, and Name is the name of the
person. Here Mrs. Mary Jones changed her
last name because she had gotten married
to Mr. Adams. The table Owner represents
the relationship between the entities Person
and Car where OwnerKey is the Identifier
of a state of the relationship Owner,
PersonKey is the Identifier of a state of the
entity Person, CarKey is the Identifier of
the state of the entity Car, and DateFrom,
DateTo determine the period of ownership.
Here, Mr. John Stewart bought a Buick in

2005 and then sold it to his friend. He
bought a Honda in 2006. In 2006 he
bought his old Buick back from his friend.
An identifier of a state of an entity is
always initiated by a real world event.
Formally it can be said that the identifier of
an entity determines one set of its
identifiers of state. For example in table
Car, vin1 determines the following set:
 A = {x | τ E(x, vin1) = T} where E(x,
vin1) is the sentence “x is in the E-relation
with vin1”. The E-relation is defined in
4.2.6.(ii). The above mentioned E-relation
does not have columns Kij and Dkl.

__

5 DETERMI
I
G PLURALITY -

IDE
TIFYI
G A
D

DISTI
GUISHI
G E
TITIES.

The process of identifying goes from a
subject to the real world and this implies
that the subject has some knowledge about
the entity which it tries to identify. In the
process of identifying there are two
constructions.

5.1 Construction of a Unique Concept of

an Entity and of Unique Members of the

Extension of the entity’s Concept -

Distinguishing Entities

To construct unique concepts of entities we
will use corresponding properties. This
construction satisfies the definition of a
concept of an entity from 4.2.2 and Frege’s
assumption. To construct unique members

of the extension of the concept, we must
consider the following two cases:
(i) We can construct a unique concept
using properties which are generated by
entities whose concept we want to
construct. If the properties in the concept
construction enable the extension of the
concept to have unique members, then we
have a construction which satisfies the
conditions in 5.1, i.e. we have the
construction we want.
(ii) If the concept’s properties can not
establish a uniqueness of the extension’s
members, then we will add a new property
to the concept of the entity, called the
identifier of the entity. The new property
will be used for the construction of the
unique entities’ identifiers. So the entity’s
identifiers by their construction will allow
the members of the extension of the
entity’s concept to be unique. On the other

 11

hand, the entity’s identifiers form unique
entities in the real world. Therefore, we
use the same identifiers for both the
formation of unique members of the
corresponding concept’s extension and for
the formation of unique entities■ So we
use the construction 5.1 to construct:
a) A concept that is different from any

other concept.
b) Members of the concept’s extension

which are mutually distinguishable■
We will call the construction described in
5.1 “distinguishing of entities”. In conclu-
sion, we can say that we use the properties
of the entity or the additional identifier of
the entity to form distinct entities.

5.2 Identification of Entity

The following constructions enable the
identification of entities whose concept
constructions were described in 5.1.(i) and
5.1.(ii) respectively.
(i) To identify an entity which has the
concept construction described in 5.1.(i)
we use a construction based on a minimal
set of attributes by which we can identify
the corresponding entity.
(ii) To identify an entity which has the
concept construction described in 5.1.(ii)
we use identifiers of the entities whose
concept is constructed in 5.1(ii)■
We will call the construction described in
5.2 “identifying of entity”.

5.3 Definition of Concept
A concept is a construct which determines
one or both of the following:
(i) A plurality of things in which all the
things satisfy the concept;
(ii) A particular thing from the plurality
determined by (i)■
In order to identify an entity we use the
following procedures:
Procedure1: Identifying the plurality.
Procedure2: Identifying individuals.

Procedure2 is not effective without
Procedure1.

6. CO
STRUCTIO
S OF DATA

THAT REPRESE
TS SI
GLE

OBJECTS OR I
DIVIDUALS

In this section we will generally consider
the construction of data that represents ind-
ividuals; this construction will be shown in
detail in Example 9. The construction of
the data described in this section is intend-
ed for databases which use concepts of
state, i.e. databases in which all the data is
saved. By an individual, we usually mean
an attribute which is represented by data.
More generally, individuals are not sets.
On the other hand, a set is a plurality rega-
rded as a single object. We consider the
entry of data which represents individuals
or single objects a separate unit in database
design. Therefore we have developed effe-
ctive solutions which enable the represent-
ation of data by applying Binary Concepts
and Binary Relations. Similarly we can co-
nstruct binary files for a file schema.
Though there have been researchers who
have expressed the desire to represent data
by means of binary relations, they have not
yet shown how this should be done.

6.1 Derived data

Derived data is data which is obtained
from the existing data in the database. For
example, this is data which we can get
from a report, display, view, or query, as
well as data which we can get by applying
operations to existing data in the database.
Relational Algebra, for example, uses a
collection of operations to relations.

6.2.
ew Data

Data which is entered into a database is
new data. This data cannot be derived from
existing data in the database. Often, it is of
interest to us how this type of data is

 12

constructed. Mainly, the new data
represents individuals. We might, for
instance, be interested in knowing how the
new data was entered into the database and
who entered it (who is responsible for this
data). We can also be interested in the
constructions of various procedures which
carry out this entry of new data.

6.3 Constructors

To construct this new data, we can use the
following two constructors – the
Constructor and the ClosingConstructor.
We create the new data using the Constru-
ctor, while we close the data with the Clos-
ingConstructor. These two constructors in
some way correspond to the Constructor
and Destructor from OOP. The difference
is that ClosingConstructor does not delete
or destroy or change data; it just says that
the data is not valid from some point in
time. The second difference is that these
two constructors are initiated by real world
events. By 3.1 we consider only two kinds
of events, the first one causes the creation
of new data in the database and the second
causes the closing of current data. The
third difference is that, using Constructor
and ClosingConstructor, we create keys
and knowledge in the database. The use of
the constructors is one of the possible
solutions. However constructors can
construct complex structures.

6.4
ecessary conditions for binary

representation

In 4.2.2.(i) we show that the concept of an
entity can be presented as a set of schemas
of binary concepts, i.e. as concepts that
have one property and one identifier of the
entity to which this property belongs. We
will now consider the conditions necessary
for binary representation. These conditions
are as follows:
(i) The entity’s properties should be
intrinsic.

(ii) The key is an identifier of the entity.
Thus, the key uniquely determines a
member of the extension and at the same
time identifies the entity, as it is defined in
Section 5.
In 4.2.9 we construct solutions for complex
databases. Now we will consider the relat-
ional model and the construction of binary
relations which represent an entity, but
without entity’s states (This is for simpler
databases). We can define a schema
mapping where the source schema is a set
of symbols for the schemas of binary
concepts and where the target schema is
the corresponding set of binary relation sy-
mbols. We can also define another 1-1
mapping, which is from the members of an
extension of a binary concept to the tuples
of the corresponding binary relation. These
two mappings determine a starting schema
for binary relations of an entity.
We can apply another approach to binary
relations. We can construct a relation
which is based on 4.2.2.(ii). This relation
represents an entity, which has an
identifier and intrinsic properties. If we
translate these two conditions to relational
terminology, then we have a relation with a
simple key and mutually independent attr-
ibutes. Obviously this relation is in BCNF.
Formally we can say: If an entity satisfies
the following conditions:
(i) The entity has an identifier;
(ii) All the other properties of the entity
are intrinsic, then the relation that
represents this entity is in BCNF■

6.5 Definition of Simple Form

Let R (K, A1,…,An) be a relation schema,
where
(a) key K is simple
(b) A1, A2,…, An are the attributes which
are mutually independent
(c) R1 (K, A1), R2 (K, A2), …, Rn (K, An)
are the corresponding binary schemas.
We will say that relational schema

 13

R (K, A1, A2,…,An) is equal to join of its
corresponding binary schemas and denote
it as R (K, A1, A2, …,An) = R1 (K, A1)
join R2 (K, A2), join … join Rn (K, An) iff
every relation that is a legal value for
R (K, A1, A2,…,An) is equal to the join of
its corresponding binary relations■

Definition

Relational schema R (K, A1, A2,…,An)
which represents an entity is in Simple
Form if R satisfies the following:
R (K, A1, A2,…,An) = R1 (K, A1) join
R2 (K, A2) join…join Rn (K, An) iff
(i) Key K is simple

(ii) A1, A2,…,An are mutually independent
attributes■
R1 (K, A1), R2 (K, A2) ,…, Rn (K, An) are
the corresponding binary schemas. In a
similar way we can define Simple Form
for m-n relationships.
Simple Form has the following advantages
over existing relational theory:
(i) We have the conditions which a relat-
ion must satisfy in order to be in BCNF;
(ii) We do not need to put a relation into
2NF and 3NF to get it into BCNF.
(iii) The binary schemas can be
immediately constructed■

__
Example 8 Now from the table Car in Example 7 we will construct the following four
tables:
 Table1 Table2 Table3
CarKey CarId CarKey Maker CarKey Type
------------------- -------------------- ------------------
23 vin1 23 Buick 23 sedan
24 vin1 24 Buick 24 sedan
25 vin1 25 Buick 25 sedan
26 vin1 26 Buick 26 sedan
27 vin2 27 Honda 27 sedan
28 vin3 28 Ford 28 sedan

 Table4
CarKey Color DateFrom DateTo

 23 silver 1.1.2000 12.20.2000
 24 blue 12.21.2001 8.1.2001
 25 red 8.2.2001 1.1.2005
 26 silver 1.2.2005 999999
 27 silver 3.15.2006 999999
 28 black 3.15.2006 999999

Here in Example 8 we have constructed
four “attribute-based” or binary relations
from the relation represented by the table
Car in Example 7. The first three tables
each have two columns, one of which is
for attributes and the other for key.
However, Table4 in addition to these two

columns has knowledge about the property
Color which is represented by two columns
(Datefrom and Dateto). One can add some
other “knowledge-columns” related to
Color. Now in Example 8 we have the
relation Car from Example 7 represented in
Simple Form■

The identifier of the state of an entity or
relationship is not created arbitrarily. It is

always initiated by a real world event, as is
defined in 4.2.4.2. This connection to a

 14

real world event gives companies great
possibilities in creating their own techno-
logy. For instance, in Example 9 a compa-
ny can establish additional paper docume-
ntation for any painting of a car with a
customer signed agreement and many
other options – all of which are associated
to the identifier of the state of the entity
Car. The identifier of the state of an entity
or relationship always goes with the identi-
fier of the entity or relationship. In the abo-
ve example the identifier 26 is associated
with VIN1, so it is not arbitrary at all. Thus
the identifier of a state is always related to
the real world and usually is associated to
documentation.

6.6 m-states

A concept of an entity’s state has the
following main components: attributes,
knowledge, and identifiers. We assume that
the m-state matches an entity’s state if all
its components match the entity’s state
components. The matching of the attributes
is already defined. Knowledge is defined in
3.7 and 3.8. We match this knowledge to a
real world entity’s state. At last, we match
the identifiers of the concept of a state of
an entity to the identified entity and the

entity’s relationships to its states. These
processes are explained earlier in the text
and examples.
Here we have the relation satisfy between
the m-states and the corresponding concept
of the state of an entity. We say that an
m-state satisfies a concept of a state if all
the components of the m-state satisfy their
corresponding concepts i.e. if every comp-
onent satisfies its corresponding binary
concept defined in 4.2.6. The meaning of
an m-entity (or m-relationship) is determ-
ined by the corresponding E-relation and
K-relations. We say also that the meaning
of the m-entity (m-relationship) is
determined as the totality of the entity’s
(relationship’s) states and the correspond-
ing knowledge. As mentioned earlier we
use constructors when we work with the
concepts of states. Both the relation satisfy
and the process of matching for m-state are
defined by their components. In a similar
way to (3.3.3) we can define a relationship
between the relation satisfy and the process
of matching for m-states:
S (the concept of an m-state of the entity,
the m-state) = T iff the state of the entity
matches the m-state.

 __

Example 9. In the following example we
will consider more than two “knowledge
columns” related to the property Color
from Example 8. Actually, the “knowledge
columns” are related to the construction of
data which represents individuals that fall
under the concept Color. Here we modified

Table4 from Example 8 and added the six
“knowledge columns” related to the
property Color: Datefrom1, Dateto1,
Datefrom2, Dateto2, Operator1, and
Operator2. So, for instance, Table4 can
have the following data:

 Table 4
CarKey Color Datefrom1 Dateto1 Operator1 Datefrom2 Dateto2 Operator2
--
23 silver 1.1.2000 999999 John 1.2.2000 999999 Mike
24 silver 1.1.2000 12.20.2000 Paul 1.2.2000 12.26.2001 Bill
25 blue 12.21.2001 999999 Paul 12.26.2001 999999 Bill

 15

The first three new columns form a logical
whole (unit) and are related to an event in
the real world regarding Color. The second
three new columns are also a logical whole
but they are related to a corresponding
event in the database. The first three new
columns contain information which John
or Paul who work in the garage write down
in the form of paper documentation. Mike
and Bill enter all the data into a computer.
The rows containing CarKey=23 and 25
are created by the Constructor while the
row containing CarKey = 24 is created by
the ClosingConstructor. Note that we can
record the user password and date from the
system. Therefore, the constructors can get

this data from the system and store it in the
database even without the person perform-
ing the data-entry knowing this. Thus, we
have a solution which can, in a formal
way, recognize who created the data and
how it was created, for all its data. The
goal is for all the data to be saved so that
the data that is already entered cannot be
changed or destroyed, even if somebody
wants it. For example, the data can be used
in a court procedure as facts. Of course,
there are other practical solutions, but we
want to show with this small example that
there are many possibilities of solutions
using binary relations.

References

[1] J. Barwise, J. Etchemendy, Model-
theoretic Semantics, in Posner, Michael
(Editor), Foundations of Cognitive Sci-

 ence, MIT Press, (1989), pp. 207-243.

[2] A. Church, The need for Abstract Ent-
 ities, American Academy of Arts and
 Sciences Proceedings 80,(1951),
 pp. 100—113.

[3] P.P. Chen, The Entity-Relationship
 Model: Toward a Unified View of Da-
 ta, ACM Trans. on Database Systems,
 Vol.1, No.1, (March 1976), pp. 9-36.

[4] G. Frege, “Über Sinn und Bedeutung.”
 Zeitschrift für Philosophie und philos-
 ophische Kritik 100, 1892, pp. 25-50.

[5] G. Frege, Grundgesetze der Arithmet-
 ik, begriffsschriftlich abgeleitet. 2 vols.
 Jena, Pohle, (1893/1903).

[6] Merleau-Ponty Maurice,
 Phenomenology of Perception, Publish
 by Routledge, 1995

[7] E. Margolis, S. Laurence, Concepts
 Core readings, The MIT Press, (1999).

[8] A. Tarski, The Semantic Conception
 of Truth and the Foundations of Sem-
 antics’, Philosophy and Phenomenolo-
 gical Research, 4, (1994), pp. 341-76.

