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ABSTRACT 

In this paper a new data model is introd- 
used. The data model is based on concept 
constructs. We present a novel approach to 
and a novel definition of a concept.  
Attention is paid to solutions of complex 
databases which can maintain states of 
entities or relationships, as well as changes 
made to these states. We consider that the 
existing theory does not have satisfactory 
solutions for these databases.  
The approach in this paper is not a kind of 
formal axiomatic system; rather we define 
the necessary and important constructs in 
the process of database design.  
 
1.  I
TRODUCTIO
 

 

In brief, this data model is devoted to data- 
databases which can maintain changes of 
attributes and databases which can main-
tain knowledge related to their data. 
Temporal databases and databases that ma- 
intain history, belong to this group of data- 
bases. Databases, in which attention is pla- 
ced on data in its broadest sense, also bel-
ong to this group of databases. An example 
of one such database is a database which 
can always determine which person or 
procedure created any piece of data in the 
database. Other examples are online appli- 
cations such as online web applications 
where data should be available and public 
as soon as it is entered. We find that these 
databases are of a general character, i.e. 
they are not special cases.  
Note that the special case of the databases 
mentioned above are databases that have 
Insert, Delete and Update operations, but 
in which changes are not maintained, i.e. 
they always have one state – the state after  
 
 

the last changes. Simple databases, which 
have no changes at all, also belong here. 
Because the existing database theory has  
tediously researched this group of data- 
bases, we have not devoted any attention to 
these simple cases. 
 

2.  PRELIMI
ARIES   
  
We accept that the world is discrete, i.e. 
that it consists of things or individuals. 
These things or individuals are called 
entities [3]. This means that we use the 
term entity only for real world objects. 
During the process of database design we 
do one very important thing - we interpret 
(a part of) the real world. Because they are 
basic in interpreting the real world, we  
introduce m-attributes, m-entities,  
m-relationships and m-states and create a 
more formal approach to these very  
complex objects. These objects are 
interpretations and abstractions of their 
corresponding real world objects. 
We also introduce concepts, which we use 
to model these real world objects and their 
relationships.  Concepts are abstract 
objects constructed in our mind.  Concepts 
are presented in detail in Section 4. 
Extension of a Concept. We accept G. 
Frege’s assumption that an object may be 
associated to every concept. This object is 
called the extension of the concept [4], [5].  
Intrinsic Properties. We assume that the 
concepts of entities have only intrinsic 
properties. By intrinsic properties, we 
mean properties which an entity (or 
relationship) has itself; intrinsic properties 
are independent of other concepts. 
Extrinsic properties, on the other hand, are 
all other properties related to the concept 
of the entity. 
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3.  PROPERTIES A
D ATTRIBUTES 

 
Data which is related to attributes and 
properties makes up the majority of data in 
every database.  This data comprises 
almost all of a database’s data. In Section 3 
we present a novel approach to properties 
and attributes.  
Limitation of Interpretation. Our 
assumption related to real world objects is 
that we can only recognize or match those 
objects for which we have perceptual, 
inferential or rational abilities. In the 
remaining text instead of perceptual, 
inferential, or rational abilities, we will use 
just the term “abilities”. 
 
3.1 Events  

In this paper it is assumed that there are 
two kinds of events in the real world 
which are related to information about an 
entity: 
(i)  An event which causes new 
information about the entity. 
(ii) An event which causes existing 
information to be invalid after this event.   
We will also say this event closes existing 
information about the entity. 
 
3.2 Information about an Entity  

When we speak of information about an 
entity in this paper, we mean information 
about the entity’s attributes. In our 
terminology, a property is a concept and a 
property has multiple attributes. 
Example 1: 
The color of an entity is a property of that 
entity, while red, blue or green are 
attributes of the entity. Of course, we must 
have the ability to match the real world 
color red to the corresponding attribute red 
in our mind. The color of an entity is the 
concept of color in our mind – as we 
mentioned, a concept is an abstract object. 
Attributes in our mind correspond to an 

entity’s real world attributes carried by 
information■ 
 
3.2.1 Matching of attributes.  
The term match is used in the sense that 
information about an entity’s attribute 
generates (by means of our abilities) a 
corresponding image of the attribute in our 
mind. This attribute’s image matches the 
entity’s attribute■ 
Definition. An m-attribute can be built up 
by the following two steps: 
(i) The m-attribute is created by the match 
between an entity’s attribute and the 
corresponding attribute in our mind. 
(ii) The m-attribute is the interpreted and 
abstracted entity’s attribute brought to us 
by information■ 
 

3.3 Definition of the Concept of an 

Entity’s Property. 

The concept of an entity’s property is an 
abstract object which is generated by 
information about the entity’s attributes 
and which is satisfied by its m-attributes 
and by nothing else■ 
Universal and Particular Attributes. We 
assume that attributes are universal, and 
not particular, i.e. that attributes do not 
depend on an entity■  
Example 2: For two cars whose color is red 
we say that they have the same color – red. 
The principle of universality of an attribute 
enables the attribute red in our mind to 
match the color red in all cars which are 
red. The color red does not depend on a 
particular car■ 
Let S be the relation satisfy between a con-
cept of a property and the corresponding 
m-attributes. If an m-attribute satisfies the 
corresponding concept, then it can be said 
that they are in a relation and we write 
that:   S (the m-attribute, the concept of the 
property) = T. 
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By definition of relation S, only the 
members of the extension of this property 
satisfy the concept of the property. On the 
other hand, every m-attribute is created 
with the help of its corresponding entity’s 
attribute. Considering 3.2.1, 4.2.1 and 
4.2.2 the following holds true: 
 
S (the m-attribute, the concept of the 
property) = T iff the m-attribute matches 
the entity’s attribute.     …    (3.3.3) 
              
Loosely speaking, (3.3.3) can be written 
as: The color of the entity car is red iff the 
information “the color of car is red” 
matches the m-attribute. 
Relation S implies that there is 
subordination in which the satisfaction of 
the concept for the m-attribute comes first, 
while its extension comes second. 
 
3.4 Definition of a Fact about an Entity 

If an attribute of an entity brought by 
information is matched with its 
corresponding m-attribute and is 
memorized in our mind, then we call this 
entity’s attribute a fact about the entity■ 
Note that an attribute which is a fact is al- 
ways related to its entity (or relationship). 
Thus, “red” is a universal attribute, while 
“red car” refers to the entity car and can be 
a fact. A fact about an entity is determined 
by three things: an attribute, a property and 
an entity.  So when we say “The car is red” 
then this fact is determined by the 
following: the entity car, attribute red and 
property color. The sentence “The car is 
red” expresses a fact about the entity. First, 
we memorize the fact in our mind, and 
then we can form a sentence that expresses 
the fact. Factual statements always express 
something about the world. 
Facts about entities are atomic, they are not 
composed. We also say facts about entities 
are primitive. However, we can construct a 
compound structure from facts. 

A fact retains the meaning of that which 
the information is about. We define  
facts as something of which we are aware, 
something connected to an entity and the 
entity’s property.  
 
3.5 Definition of an Entity’s Attribute.  

An entity’s attribute is presented by the 
following: 
(i)  Information about the attribute of the 
entity; 
(ii) One fact about the entity■ 
Example 3. This example is related to the 
work of French philosopher Maurice 
Merleau-Ponty [6]. When we look at a 
wheel from an angle, we see the wheel in 
the shape of an ellipse. However, we 
describe the wheel as being a circle.  
This example is another confirmation that a 
concept is not determined only by a 
conjunction of properties. 
 
3.6 Primitive Knowledge About an 

Entity 
Those entity’s attributes which are facts 
are stored in a database. They are primitive 
knowledge about an entity. A stored or 
memorized fact becomes permanent.  
Definition. A set of all facts about one 
entity is primitive knowledge about the 
entity. We denote it as KE = {F1, F2,…,Fk} 
where Fi, are the facts defined in 3.4 
 
3.7 Knowledge about an Attribute 

Knowledge about an attribute is a set of 
facts which are related to one individual 
attribute. We will denote knowledge about 
an attribute in the following way: 
      Ka = {Fa1, Fa2,…,Fam}   
For instance, if John provided information 
about attribute An, then John is a fact 
related to attribute An. If attribute An was 
created in the real world on 12 December 
2007, then this date is a fact about attribute 
An.  
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3.8 Knowledge about Data 

When a fact about an entity is stored in a 
database, we name it data. Data is represe-
nted by a value from a domain. Facts about 
data from a database establish knowledge 
about this data. We will denote this 
knowledge as:  
      Kd = {Fd1, Fd2,…,Fdn} 
For example, if Sam entered the data Dn 
into the database to represent the attribute 
An, then Sam is a fact related to Dn. If the 
data Dn was entered on 1/12/08, then this 
date is a fact about Dn.■  
Knowledge defined in 3.6 – 3.8 is related 
to basic database elements and our inten-
tion is to define this basic knowledge.  The 
facts from 3.7 and 3.8 are atomic, similar 
to facts about an entity.  
Regarding the above defined three terms of 
knowledge, we can say that all data (i.e. 
the information which is stored in a data-
base) represents facts or that we believe it 
represents facts. 
 
3.9 Knowledge about an Entity. 
Knowledge about an entity at some point 
in time is denoted by K and  
K = KE ∪KA ∪KD; where KA is the 
knowledge about all the attributes of one 
entity and KD is knowledge about all the 
data about the entity. We conclude that: 
(i) There are different kinds of facts; facts 
about entities, attributes or data 
(ii) We use attributes together with 
associated knowledge related to them. 
We define knowledge about a relationship 
similarly to defining knowledge about an 
entity. 
 
4 THE CO
CEPTUAL MODEL 

 

4.1 Introduction to conceptual model 

In Section 2 we introduced concepts as 
abstract objects which are abstracted by 
our rational activities. The process of data 
modeling is divided into two levels; a con- 

ceptual level, and a logical level or databa-
se level. There is a mapping between the 
conceptual schema and the database sche-
ma. We determine schema mapping as a 
mapping between a source schema and a 
target schema. The source schema is the 
schema of a concept. On the conceptual 
level we only consider schemas of conc- 
epts, schema mappings and extensions.  
 
4.2 Concepts  

We construct concepts so that they are  
satisfied by the intended things. We derive 
the schema of a concept and its semantic 
properties from a corresponding concept 
and we use this schema to express the  
concept in language. For the purpose of 
database theory and practical use, we will 
define the following types of concepts:  the 
concept of an entity, the concept of an m-n 
relationship and the concept of a state of an 
entity (or relationship). The concept of an 
entity’s property is defined in 3.3. Every 
schema of the above concepts denotes a 
key that uniquely identifies the members of 
the concept’s extensions. The process of 
identifying plurality and individuals is 
defined in Section 5.  
We do not specify a schema definition 
language. Instead, we define a simple and 
intuitive schema-level notation. 
 
4.2.1 G. Frege’s Assumption 

In Section 2 we introduced the extension 
of a concept. Now we determine the 
extension of a concept in the way it was 
done by Gottlob Frege: The extensions of 
two concepts are identical objects iff the 
two concepts are coextensive■ 
According to G. Frege, two concepts are 
coextensive if every thing that satisfies 
either satisfies the other. 
Although we use G. Frege’s approach to 
extensions, we have a different approach to 
concepts. We define a concept in Section 
5.3.  
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In the same way in which we defined 
 m-attributes we define m-entities,  
m-relationships and m-states. These 
objects are interpretations and abstractions 
of their corresponding real world objects, 
as is determined in Section 2. M-entities 
satisfy the concept of an entity, m-relation-
ships satisfy the concept of an m-n relatio- 
nship, and m-states satisfy the concept of a 
state of an entity (relationship). We also  
consider the process of matching real 
world objects with their interpretations and 
abstractions. During the process of inter-
preting a real world object, there is another 
process which is involved in the construct- 
ion of the interpreted object. We call this 
process matching. The following two 
things are important in the matching: 
(i) The interpreted object matches the real 
world object in compliance with its 
concept; 
(ii) The interpreted object can be used to 
identify the corresponding real world 
object. 
 

4.2.2 Concept of an Entity 

We determine the concept of an entity by 
its properties. We assume that these 
properties are intrinsic. This implies that 
the entity’s properties are related only to 
the concept of the entity and to nothing 
else. Therefore, we use an identifier of an 
entity as a key in this paper. The schema of 
the concept of an entity is defined by the 
following two forms:  
(i)  By 3.3, properties are concepts. 
Therefore, the schema of the concept of an 
entity can be presented as follows: 
Schema1 (IdOfEntity, Property1),…,  
Scheman (IdOfEntity, Propertyn), where 
IdOfEntity is the identifier of the entity 
which denotes that all the properties 
belong to one entity. 
(ii) The schema of the concept of the entity 
can be also determined as:  

Schemae (IdOfEntity, Property1,…, 
Propertyn )■ 
These two schemas show that one entity 
can be represented either by a concept or 
by a set of concepts. In Example 6 in 4.2.3 
the way in which an entity represented by 
binary concepts can be represented by one 
concept will be shown.   
M-entity. The m-entity consists of m-attri- 
butes which correspond to the real world 
entity’s attributes. We assume that the 
m-entity matches an entity if all it’s the  
m-attributes match the corresponding enti-
ty’s attributes carried by information. We 
say that the m-entity satisfies the concept 
of an entity if all of its m-attributes satisfy 
the concepts of the corresponding properti-
es. We define the relation satisfy as a relat-
ion between the concept and the m-entities 
which satisfy the concept. Similarly to 
(3.3.3), we can say that the following holds 
true:        
S (the m-entity, the concept of the entity) = 
T iff the m-entity matches the entity. 
 
4.2.3 Concept of an m-n Relationship  

This is a concept which models 
relationships between two entities. We 
construct this concept so that it determines 
an m-n relationship and the properties 
which are related to it, m,n ≥  1. The 
schema of a concept of an m-n relationship 
between two entities includes the 
following three components:   
(i)  Schemar ( KeyOf Entity1, 
KeyOfEntity2, Property1,…,Propertym)   
(ii) The key of a relationship is represented 
by keys of the involved entities. In the sch- 
ema: Key = (KeyOfEntity1, KeyOfEntity2).  
(iii) The involved entities are represented 
by the schemas of their concepts. So the 
concepts of these entities are involved in 
the concept of the m-n relationship■ 
The concept of an m-n relationship is satis- 
fied by the corresponding m-relationships. 
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The components of the m-relationship 
satisfy 4.2.3.(i), 4.2.3.(ii) or 4.2.3.(iii).  
In a similar way to (3.3.3) we define that: 
S (the m-relationship, the concept of the 
m-n relationship) = T iff the m-relationship 
matches the m-n relationship. 
Example 4.   The schema: 
TeacherBookCourse (Teacher, Book, 
Course) is not a schema for a concept of an 
m-n relationship, because the schemas for 
corresponding entities are not given. In 
other words, it is not appropriate that the 
construction of a concept be based on 
unknown concepts. 
Example 5.   Owner (PersonId, CarId), 
Key = (PersonId, CarId);                                
Person (PersonId, PersonName),  Key = 
(PersonId);    
Car (CarId, Maker, Color), Key = (CarId). 
Here we have a schema of the concept of 
the m-n relationship Owner between the 
entities Person and Car. Now for example, 
we can map the conceptual schema to a file 
schema. In this case we will construct the 
following files:  FileOwner, FilePerson and 
FileCar.  
(i) The FileOwner file has the schema: 
(PersonId, CarId), and the following two 
keys:   
(ii) K= (PersonId, CarId) and –K = (CarId, 
PersonId).  
We named the keys “K” and “–K” to emp- 
hasize that they are inverses of each other. 
(iii) File Person has the schema: Person 
(PersonId, PersonName), Key = (PersonId) 
       File Car has the schema: Car (CarId, 
Maker, Color), Key = (CarId)■ 
Example 6. We can apply 1-1 relationships 
to the extensions and entity which corresp-
ond to the concepts in 4.2.2(i) and then we 
will get the schemas in 4.2.2.(ii). Thus, if 
we apply 1-1 relationship to the extensions 

 
and entity which have the following sche-  
mas:  Schema1 (IdOfEntity, Property1), 
Schema2 (IdOfEntity, Property2)  
then we have Schemae2 (IdOfEntity, 
IdOfEntity,  Property1, Property2 ) =  
Schemae2 (IdOfEntity, Property1, 

Property2) and this is by definition the 
schema of the entity. Similarly, we can get 
Schemae3, or Schemaen, i.e. schema of an 
entity with n properties. 
 
4.2.3.1 Complex Concepts 

The above examples show us how we can 
build complex concepts from basic 
concepts. We construct complex concepts 
by applying the concept of m-n relation- 
ships among entities, where m, n ≥  1. 
 
4.2.4 Concept of a State of an Entity or 

Relationship 

In Section 1 we determined which 
databases can be effectively solved using 
the results from this paper. Here in 4.2.4 
we present our solutions for these 
databases. Later in examples 7, 8 and 9 we 
show a small fraction of practical and 
technical possibilities based on our 
solutions. By using the concept of a state 
of an entity or relationship we construct 
solutions for the databases mentioned in 
section 1 as well as many other complex 
databases. The concept of a state of an 
entity has the following components: 
properties, knowledge about attributes and 
knowledge about the data. The concept of 
a state of an entity also contains an 
identifier of the entity and an identifier of 
the state of the entity. One entity can have 
many states. A concept of a state of an 
entity has the following form:  
 

   
       identifier of the         identifier      attributes   knowledge about     knowledge 
      state of an entity      of the entity                          attributes              about data 
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In the states of an entity, the identifier of 
the entity stays unchanged through all the 
states of the entity, because the states are 
from one entity (however if we want, then 
we can decide and determine which of the 
states belong to one entity). The identifier 
of the entity determines which states  
belong to the entity. If an entity only has 
one state, then the identifier of the entity is 
semantically equal to the identifier of the 
state. 
Knowledge about the entity’s attributes 
and knowledge about data are defined in 
3.7 and 3.8. Knowledge about an entity (or 
relationship) is defined in 3.9  
 
4.2.4.1 Definition of a State of an Entity 

or Relationship.  

A state of an entity (or relationship) is 
knowledge about the entity (relationship) ■ 

The identifier of a state of an entity is the 
key of the state of the entity.  
 

4.2.4.2   Definition of a Change of a State 

A change of a state of an entity is any  
change of knowledge about the entity■ 
A change of a state of an entity (or relatio- 
nship) is always caused by an event from 
the real world. So in the case that a real 
world event causes a change of the state of 
an entity, we will create a new identifier of 
the new state of the entity. 
When we work with the concept of a state 
of an entity, this means that we keep all the 
data in a database. It also means that no 
updating or deleting of data from the 
database occurs (i.e. the database is always 
expanding), because we define only two 
operations on the data entry level; adding 
new data and closing existing data.

 
A concept of a state of a relationship has the following form: 
 

identifier of the state 
of a relationship 

key of a 
relationship 

attributes 
knowledge about 
attributes or the 

key 

knowledge 
about data 

 
Here the “key of a relationship” is a set of 
identifiers of states of the involved entities. 
Now we will analyze in more detail the 
concept of a state of an entity. The concept 
of a state of an entity is a definite departure 
from the idea that a concept is determined 
only by a conjunction of properties. This 
concept has an associated structure which 
generates the meaning of the m-entity (or 
m-relationship) as the totality of the 
entity’s (or relationship’s) states and the 
corresponding knowledge. We assume the 
following principles regarding concepts 
and especially the concept of a state of an 
entity to be true: 
(i) When we are constructing a concept, 
then we know in advance how that concept 
has to look, i.e. which kinds of the entities  

satisfy the concept. As concepts are abstr-
act objects i.e. concepts are on the thought 
level, we actually know what kind of con-
cept we want even before we have formed 
a sentence which expresses this concept.  
(ii) The concept of a state of an entity is 
based on the definition of state in 4.2.4.1. 
This concept determines a new state every 
time a change of the state of the entity (or 
relationship) happens in the real world. 
(iii) The concept of a state of an entity 
enables us to identify the plurality of 
states, and also enables us to identify 
individual states. This concept determines 
the construction of individuals as well as 
the identification of the constructor which 
constructed these individuals.  
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4.2.5 Schema of the Concept of a State.  
Now we will present the schema of the 
concept of a state of an entity in detail. The 
schema of the concept of a state of an  
entity takes the form:   
ConceptStateName (P, E, A1… An, Kp1… 
Knr, Dp1,…,Dns)         
where P is the concept of the identifier of a 
state of the entity (or relationship); 
E is the concept of the identifier of the 
entity; 
A1,…,An are concepts of the properties of 
an entity (or relationship); 
Each property, including E and P, can have 
different sets of knowledge K associated to 
them and defined in 3.6 – 3.9. Thus:  
P has knowledge   Kp1, Kp2… Kpi; 
E has knowledge   Ke1, Ke2… Kej; 
A1 has knowledge K11, K12…K1k;                                      
…. 
An has knowledge Kn1, Kn2… Knr. 
Knowledge Dp1,…,Dns is defined in 3.8. 
 
4.2.6 Binary Concepts.  
The schema of a concept of a state can be 
represented by schemas of the following 
binary concepts:  (P, E), (P, A1)… (P, An) 
to which we associate the corresponding 
knowledge and get the following concepts: 
(i)  Schemas of K-concepts; 
Ck1 (P,A1, K11,…,K1k,D1,…,D1m); 
… 
Ckn (P, An, Kn1,…,Knr, Dn1,…,Dnq); 
(ii)  Schema of the E-concept 
Ce (P, E, Kp1,…,Kpi, Dp1,…,Dps); 
(iii)  Schema of the E-concept for the state 
of an m-n relationship between two entities 
will be as follows: Cemn (P, Pe1, Pe2, 
Kk1,…,Kkt, Dk1,…,Dku)  where Pe1, Pe2 are 
identifiers of states of entities e1, e2.    
The state of any entity can be represented 
in two ways: the one described in 4.2.5 and 
by the one described in 4.2.6. The schemas 
in sections 4.2.5 and 4.2.6 represent the 
same entity. The constructs applied in 
these schemas enable the direct 

construction of schemas in 4.2.6 from the 
schemas in 4.2.5, and vice versa. These 
constructs enable every change of state to 
be recorded. We prefer this recording to be 
done by constructors and the advantages of 
this are explained in Section 6.  E-concepts 
determine the relationships between one 
entity and all of its states.  
 
4.2.7 States in Relational Model 

In the relational model we represent 
knowledge by columns. We represent a 
state of an entity in the relational model as 
the following relation schema: Rstate (P, 
E, A1… An, Kp1… Knr, Dp1,…,Dnq). Here 
relation schema Rstate is a target schema 
and the corresponding source schema is in 
the form of ConceptStateName from 4.2.5. 
We accept that a relation has, aside from 
properties columns, those columns which 
represent knowledge and identifiers. 
 
4.2.8 Binary Relations 

The schema Rstate can be represented by 
schemas of the following binary relation 
schemas:  (P, E), (P, A1)… (P, An) to 
which we associate the corresponding 
knowledge and we get the following 
relation schemas: 
(i)  Schemas of K-relations; 
Rk1 (P,A1, K11,…,K1k,D1,…,D1m); 
… 
Rkn (P, An, Kn1,…,Knr, Dn1,…,Dnq); 
(ii) Schema of the E-relation 
Re (P, E, Kp1,…,Kpi, Dp1,…,Dpq); 
If we have a schema of the state of an m-n 
relationship between two entities, then 
instead of E we will put Pe1,Pe2, in Re , 
where Pe1, Pe2 are identifiers of states of 
entities e1, e2■  
We call these schemas corresponding 
binary schemas because each of them has 
one attribute and the simple key. E-relation 
and K-relations are types of binary 
relations because if we omit the columns 
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of knowledge, then the relations become 
binary relations. 
 
4.2.9 An Effective Solution Which 

Decomposes Any Relation of State to 

Binary Relations 

Let Rstate and Rk1,…,Rkn, Re are the 
relation schemas defined in 4.2.7 and 4.2.8 
respectively. We will say that relational 
schema Rstate is equal to join of its corre-
sponding binary schemas and denote it as 
Rstate (P, E, A1… An, Kp1… Knr, 
Dp1,…,Dnq) = 
Re (P, E,  Kp1,…,Kpi,Dp1,…,Dpq) join  

Rk1 (P,A1, K11,…,K1k, D1,…,D1m) join,…, 
join Rkn (P, An, Kn1,…,Knr, Dn1,…,Dnq) 
if and only if every relation that is a legal 
value for Rstate is equal to the join of its 
corresponding binary relations■ 
This equation holds always because of the 
construction of the simple key, states and  
E-relation. One identifier of a state 
determines all the components of the state. 
One identifier of an entity determines all 
the states of the entity. The relations are 
joined using common column P. The 
equation holds true for both entities and 
relationships. 

______________________________________________________________________ 
Example 7
This example shows how certain complex 
databases, including “temporal databases” 
and “databases which maintain history”, 
should be solved. The solution is related to 
two entities and one relationship, but each 
of these three data structures changes its 
state. We begin with the fact that the 
concept of a state of the entity Car is given 

by the schema: Car (CarKey, CarId, 
Maker, Type, Color, DateFrom, DateTo). 
Using the mapping from the schema of the 
concept to the schema of the relation we 
have the following relation schema: Car 
(CarKey CarId, Maker Type, Color 
DateFrom, DateTo). We will use the 
schema to form the following table Car: 

                                
                                                         Table Car                    
CarKey     CarId     Maker      Type        Color    DateFrom      DateTo 
------------------------------------------------------------------------------------------------ 
23             vin1        Buick       sedan      silver    1.1.2000.    12.20.2000 
24             vin1        Buick       sedan      blue     12.21.2000    8.1.2001 
25             vin1        Buick       sedan      red        8.2. 2001     1.1.2005 
26             vin1        Buick       sedan      silver     1.2. 2005      999999 
27             vin2        Honda      sedan      silver     3.15.2006     999999 
28             vin3        Ford         sedan      black     3.15.2006     999999 
… 
CarKey is the identifier of the state of the 
entity Car, this is the only property of Car 
that has unique values. CarId is an 
identifier of the entity Car. VIN (vehicle 
identification number) values are used for 
this property. In this example CarKey’s 
values 23, 24, 25, and 26 denote four states 
of the one car identified with CarId = vin1. 
Date “999999” represents the maximum 
date in the used software and means that 
the corresponding data is current. In this 

table, the columns DateFrom and DateTo 
are strictly related to one attribute from the 
column Color. DateFrom and DateTo are 
not properties of the entity Car. Instead, 
they are a part of our actual knowledge 
about one particular attribute from the 
column Color. The entity Car also 
represents knowledge about a particular 
attribute from the column Color. 
Therefore, besides columns which 
represent properties, the table Car also has 
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columns which represent knowledge about attributes.   
                
                   Table Person                                                    Table Owner  
PersonKey  PersonId    Name            OwnerKey PersonKey CarKey DateFrom  DateTo  
-----------------------------------------      ------------------------------------------------------------- 
  208             ssn1      Mary Jones            54          210            26     1.2.2005     3.15.2006 
  209             ssn1      Mary Adams          55          210            27    3.16.2006   10.9.2006 
  210             ssn2      John Stewart          56          210            26    10.10.2006   999999 
 
In the table Person, PersonKey is an 
Identifier of the state of the entity Person, 
PersonId is the Identifier of the entity 
Person, and Name is the name of the 
person. Here Mrs. Mary Jones changed her 
last name because she had gotten married 
to Mr. Adams. The table Owner represents 
the relationship between the entities Person 
and Car where OwnerKey is the Identifier 
of a state of the relationship Owner, 
PersonKey is the Identifier of a state of the 
entity Person, CarKey is the Identifier of 
the state of the entity Car, and DateFrom, 
DateTo determine the period of ownership. 
Here, Mr. John Stewart bought a Buick in 

2005 and then sold it to his friend. He 
bought a Honda in 2006. In 2006 he 
bought his old Buick back from his friend. 
An identifier of a state of an entity is 
always initiated by a real world event. 
Formally it can be said that the identifier of 
an entity determines one set of its 
identifiers of state. For example in table 
Car, vin1 determines the following set: 
 A = {x | τ E(x, vin1) = T} where E(x, 
vin1) is the sentence “x is in the E-relation 
with vin1”.  The E-relation is defined in 
4.2.6.(ii). The above mentioned E-relation 
does not have columns Kij and Dkl.   

________________________________________________________________________                                           
 
5 DETERMI
I
G PLURALITY   - 

IDE
TIFYI
G A
D 

DISTI
GUISHI
G E
TITIES.  

 

The process of identifying goes from a 
subject to the real world and this implies 
that the subject has some knowledge about 
the entity which it tries to identify. In the 
process of identifying there are two 
constructions.  
 
5.1 Construction of a Unique Concept of 

an Entity and of Unique Members of the 

Extension of the entity’s Concept   - 

Distinguishing Entities 

To construct unique concepts of entities we 
will use corresponding properties. This 
construction satisfies the definition of a 
concept of an entity from 4.2.2 and Frege’s 
assumption. To construct unique members 

of the extension of the concept, we must 
consider the following two cases:  
(i) We can construct a unique concept 
using properties which are generated by 
entities whose concept we want to 
construct. If the properties in the concept 
construction enable the extension of the 
concept to have unique members, then we 
have a construction which satisfies the 
conditions in 5.1, i.e. we have the 
construction we want. 
(ii) If the concept’s properties can not 
establish a uniqueness of the extension’s 
members, then we will add a new property 
to the concept of the entity, called the 
identifier of the entity. The new property 
will be used for the construction of the 
unique entities’ identifiers. So the entity’s 
identifiers by their construction will allow 
the members of the extension of the 
entity’s concept to be unique. On the other 
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hand, the entity’s identifiers form unique 
entities in the real world. Therefore, we 
use the same identifiers for both the 
formation of unique members of the 
corresponding concept’s extension and for 
the formation of unique entities■ So we 
use the construction 5.1 to construct: 
a) A concept that is different from any 

other concept. 
b) Members of the concept’s extension 

which are mutually distinguishable■ 
We will call the construction described in 
5.1 “distinguishing of entities”.  In conclu-
sion, we can say that we use the properties 
of the entity or the additional identifier of 
the entity to form distinct entities. 
 
5.2 Identification of Entity 

The following constructions enable the 
identification of entities whose concept 
constructions were described in 5.1.(i) and 
5.1.(ii) respectively.  
(i) To identify an entity which has the 
concept construction described in 5.1.(i) 
we use a construction based on a minimal 
set of attributes by which we can identify 
the corresponding entity.  
(ii) To identify an entity which has the 
concept construction described in 5.1.(ii) 
we use identifiers of the entities whose 
concept is constructed in 5.1(ii)■ 
We will call the construction described in 
5.2 “identifying of entity”.    
 
5.3 Definition of Concept 
A concept is a construct which determines 
one or both of the following:  
(i)  A plurality of things in which all the 
things satisfy the concept; 
(ii) A particular thing from the plurality 
determined by (i)■ 
In order to identify an entity we use the 
following procedures: 
Procedure1: Identifying the plurality. 
Procedure2: Identifying individuals. 

Procedure2 is not effective without 
Procedure1. 
 
6.  CO
STRUCTIO
S OF DATA 

THAT REPRESE
TS SI
GLE 

OBJECTS OR I
DIVIDUALS    

 

In this section we will generally consider 
the construction of data that represents ind-
ividuals; this construction will be shown in 
detail in Example 9. The construction of 
the data described in this section is intend-
ed for databases which use concepts of  
state, i.e. databases in which all the data is 
saved. By an individual, we usually mean 
an attribute which is represented by data. 
More generally, individuals are not sets. 
On the other hand, a set is a plurality rega- 
rded as a single object. We consider the 
entry of data which represents individuals 
or single objects a separate unit in database 
design. Therefore we have developed effe-
ctive solutions which enable the represent- 
ation of data by applying Binary Concepts 
and Binary Relations. Similarly we can co- 
nstruct binary files for a file schema. 
Though there have been researchers who 
have expressed the desire to represent data 
by means of binary relations, they have not 
yet shown how this should be done.   
 
6.1 Derived data 

Derived data is data which is obtained 
from the existing data in the database. For 
example, this is data which we can get 
from a report, display, view, or query, as 
well as data which we can get by applying 
operations to existing data in the database. 
Relational Algebra, for example, uses a 
collection of operations to relations. 
 

6.2. 
ew Data  

Data which is entered into a database is 
new data. This data cannot be derived from 
existing data in the database. Often, it is of 
interest to us how this type of data is 
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constructed. Mainly, the new data 
represents individuals. We might, for 
instance, be interested in knowing how the 
new data was entered into the database and 
who entered it (who is responsible for this 
data). We can also be interested in the 
constructions of various procedures which 
carry out this entry of new data. 
 
6.3 Constructors 

To construct this new data, we can use the 
following two constructors – the  
Constructor and the ClosingConstructor. 
We create the new data using the Constru-
ctor, while we close the data with the Clos- 
ingConstructor. These two constructors in 
some way correspond to the Constructor 
and Destructor from OOP. The difference 
is that ClosingConstructor does not delete 
or destroy or change data; it just says that 
the data is not valid from some point in 
time. The second difference is that these 
two constructors are initiated by real world 
events. By 3.1 we consider only two kinds 
of events, the first one causes the creation 
of new data in the database and the second 
causes the closing of current data. The 
third difference is that, using Constructor 
and ClosingConstructor, we create keys 
and knowledge in the database. The use of 
the constructors is one of the possible 
solutions. However constructors can 
construct complex structures.  
 
6.4 
ecessary conditions for binary 

representation 

In 4.2.2.(i) we show that the concept of an 
entity can be presented as a set of  schemas 
of binary concepts, i.e. as concepts that 
have one property and one identifier of the 
entity to which this property belongs. We 
will now consider the conditions necessary 
for binary representation. These conditions 
are as follows: 
(i) The entity’s properties should be 
intrinsic.  

(ii) The key is an identifier of the entity.  
Thus, the key uniquely determines a 
member of the extension and at the same 
time identifies the entity, as it is defined in 
Section 5.  
In 4.2.9 we construct solutions for complex 
databases. Now we will consider the relat-
ional model and the construction of binary 
relations which represent an entity, but 
without entity’s states (This is for simpler 
databases). We can define a schema 
mapping where the source schema is a set 
of symbols for the schemas of binary 
concepts and where the target schema is 
the corresponding set of binary relation sy- 
mbols. We can also define another 1-1 
mapping, which is from the members of an 
extension of a binary concept to the tuples 
of the corresponding binary relation. These 
two mappings determine a starting schema 
for binary relations of an entity. 
We can apply another approach to binary 
relations. We can construct a relation 
which is based on 4.2.2.(ii). This relation 
represents an entity, which has an 
identifier and intrinsic properties. If we 
translate these two conditions to relational 
terminology, then we have a relation with a 
simple key and mutually independent attr- 
ibutes. Obviously this relation is in BCNF. 
Formally we can say: If an entity satisfies 
the following conditions: 
(i)  The entity has an identifier; 
(ii)  All the other properties of the entity 
are intrinsic, then the relation that 
represents this entity is in BCNF■ 
 
6.5 Definition of Simple Form   

Let R (K, A1,…,An) be a relation schema, 
where 
(a) key K is simple 
(b) A1, A2,…, An are the attributes which 
are mutually independent 
(c) R1 (K, A1),  R2 (K, A2), …, Rn (K, An) 
are the corresponding binary schemas. 
We will say that relational schema  
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R (K, A1, A2,…,An) is equal to join of its 
corresponding binary schemas and denote 
it as R (K, A1, A2, …,An)   =   R1 (K, A1) 
join R2 (K, A2), join … join Rn (K, An)  iff 
every relation that is a legal value for  
R (K, A1, A2,…,An) is equal to the join of 
its corresponding binary relations■  

Definition 

Relational schema R (K, A1, A2,…,An) 
which represents an entity is in Simple 
Form if R satisfies the following: 
R (K, A1, A2,…,An) = R1 (K, A1) join  
R2 (K, A2) join…join Rn (K, An) iff 
(i)  Key K is simple 

(ii) A1, A2,…,An are mutually independent 
attributes■  
R1 (K, A1), R2 (K, A2) ,…, Rn (K, An) are 
the corresponding binary schemas. In a 
similar way we can define Simple Form 
for m-n relationships. 
Simple Form has the following advantages 
over existing relational theory:  
(i)   We have the conditions which a relat-
ion must satisfy in order to be in BCNF; 
(ii)  We do not need to put a relation into 
2NF and 3NF to get it into BCNF. 
(iii) The binary schemas can be 
immediately constructed■  

________________________________________________________________________________ 
Example 8 Now from the table Car in Example 7 we will construct the following four 
tables: 
    Table1                             Table2                            Table3                        
CarKey  CarId                CarKey   Maker                 CarKey    Type    
-------------------               --------------------                  ------------------ 
23          vin1                   23          Buick                   23          sedan           
24          vin1                   24          Buick                   24          sedan           
25          vin1                   25          Buick                   25          sedan            
26          vin1                   26          Buick                   26          sedan            
27          vin2                   27          Honda                  27          sedan            
28          vin3                   28          Ford                     28          sedan            
 
                       Table4 
CarKey     Color      DateFrom      DateTo 
----------------------------------------------------- 
     23      silver      1.1.2000       12.20.2000    
     24       blue       12.21.2001    8.1.2001 
     25       red         8.2.2001        1.1.2005 
     26      silver      1.2.2005         999999 
     27      silver      3.15.2006       999999 
     28      black      3.15.2006       999999 
 
Here in Example 8 we have constructed 
four “attribute-based” or binary relations 
from the relation represented by the table 
Car in Example 7. The first three tables 
each have two columns, one of which is 
for attributes and the other for key. 
However, Table4 in addition to these two 

columns has knowledge about the property 
Color which is represented by two columns 
(Datefrom and Dateto). One can add some 
other “knowledge-columns” related to 
Color. Now in Example 8 we have the 
relation Car from Example 7 represented in 
Simple Form■  

_______________________________________________________________________ 
The identifier of the state of an entity or 
relationship is not created arbitrarily. It is 

always initiated by a real world event, as is 
defined in 4.2.4.2.  This connection to a 
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real world event gives companies great 
possibilities in creating their own techno-
logy. For instance, in Example 9 a compa- 
ny can establish additional paper docume-
ntation for any painting of a car with a  
customer signed agreement and many 
other options – all of which are associated 
to the identifier of the state of the entity 
Car. The identifier of the state of an entity 
or relationship always goes with the identi-
fier of the entity or relationship. In the abo-
ve example the identifier 26 is associated 
with VIN1, so it is not arbitrary at all. Thus 
the identifier of a state is always related to 
the real world and usually is associated to 
documentation. 
 
6.6 m-states 

A concept of an entity’s state has the 
following main components:  attributes, 
knowledge, and identifiers. We assume that 
the m-state matches an entity’s state if all 
its components match the entity’s state 
components. The matching of the attributes 
is already defined. Knowledge is defined in 
3.7 and 3.8. We match this knowledge to a 
real world entity’s state. At last, we match 
the identifiers of the concept of a state of 
an entity to the identified entity and the                                                                                                                                      

entity’s relationships to its states. These 
processes are explained earlier in the text 
and examples.  
Here we have the relation satisfy between 
the m-states and the corresponding concept  
of the state of an entity. We say that an  
m-state satisfies a concept of a state if all 
the components of the m-state satisfy their  
corresponding concepts i.e. if every comp- 
onent satisfies its corresponding binary 
concept defined in 4.2.6. The meaning of 
an m-entity (or m-relationship) is determ-
ined by the corresponding E-relation and 
K-relations. We say also that the meaning 
of the m-entity (m-relationship) is  
determined as the totality of the entity’s 
(relationship’s) states and the correspond- 
ing knowledge. As mentioned earlier we 
use constructors when we work with the 
concepts of states. Both the relation satisfy 
and the process of matching for m-state are 
defined by their components. In a similar 
way to (3.3.3) we can define a relationship 
between the relation satisfy and the process 
of matching for m-states: 
S (the concept of an m-state of the entity, 
the m-state) = T iff the state of the entity 
matches the m-state. 

 ____________________________________________________________________ 
                                                                                                                             
Example 9. In the following example we 
will consider more than two “knowledge 
columns” related to the property Color 
from Example 8. Actually, the “knowledge 
columns” are related to the construction of 
data which represents individuals that fall 
under the concept Color. Here we modified 

Table4 from Example 8 and added the six 
“knowledge columns” related to the 
property Color: Datefrom1, Dateto1, 
Datefrom2, Dateto2, Operator1, and 
Operator2. So, for instance, Table4 can 
have the following data:

 
                                                                   Table 4 
CarKey  Color  Datefrom1  Dateto1   Operator1   Datefrom2   Dateto2   Operator2 
---------------------------------------------------------------------------------------------------- 
23         silver   1.1.2000        999999     John       1.2.2000         999999      Mike 
24         silver   1.1.2000     12.20.2000  Paul        1.2.2000     12.26.2001    Bill    
25         blue     12.21.2001    999999     Paul        12.26.2001     999999      Bill 
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The first three new columns form a logical 
whole (unit) and are related to an event in 
the real world regarding Color. The second 
three new columns are also a logical whole 
but they are related to a corresponding 
event in the database. The first three new 
columns contain information which John 
or Paul who work in the garage write down 
in the form of paper documentation. Mike 
and Bill enter all the data into a computer. 
The rows containing CarKey=23 and 25 
are created by the Constructor while the 
row containing CarKey = 24 is created by 
the ClosingConstructor. Note that we can 
record the user password and date from the 
system. Therefore, the constructors can get 

this data from the system and store it in the 
database even without the person perform-
ing the data-entry knowing this. Thus, we 
have a solution which can, in a formal 
way, recognize who created the data and 
how it was created, for all its data. The 
goal is for all the data to be saved so that 
the data that is already entered cannot be 
changed or destroyed, even if somebody 
wants it. For example, the data can be used 
in a court procedure as facts. Of course, 
there are other practical solutions, but we 
want to show with this small example that 
there are many possibilities of solutions 
using binary relations.  
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